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Abstract
First-principles, density-functional-based electronic structure calculations
are employed to study the changes in the electronic properties of
ZnCyNi3 and MgCyNi3 using the Korringa–Kohn–Rostoker coherent-potential
approximation method in the atomic sphere approximation (KKR-ASA CPA).
As a function of decreasing C atomic percentage, we find a steady decrease in
the lattice constant and bulk modulus in both alloys. However, the pressure
derivative of the bulk modulus displays an opposite trend. Following the Debye
model, which relates the pressure derivative of the bulk modulus to the average
phonon frequency of the crystal, it can thus be argued that ZnCNi3 and its
disordered alloys possess a different phonon spectrum in comparison to its
MgCNi3 counterparts. This is further justified by the marked similarity we
find in the electronic structure properties such as the variation in the density
of states and the Hopfield parameters calculated for these alloys. The effects on
the equation of state parameters and the density of states at the Fermi energy,
for partial replacement of Mg by Zn, are also discussed.

1. Introduction

In spite of being iso-structural and iso-valent to the cubic perovskite 8 K superconductor
MgCNi3 [1], ZnCNi3 remains in the normal metal state down to 2 K [2]. Specific heat
measurements indicate that the absence of superconductivity in ZnCNi3 may be due to a
substantial decrease in the density of states at the Fermi energy N(EF) resulting from its
relatively low unit cell volume in comparison with MgCNi3 [2]. However, electronic structure
calculations show that the decrease in N(EF) is not sizeable enough to make ZnCNi3 non-
superconducting [3]. For both MgCNi3 [4–7] and ZnCNi3 [3], the density of states spectra
display similar characteristics, particularly in the distribution of electronic states near the Fermi
energy EF. The electronic states at EF are dominated by Ni 3d states with a little admixture
of C 2p states. There exists a strong van Hove singularity-like feature just below EF, which is
primarily derived from the Ni 3d bands.
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To account for the lack of superconductivity in ZnCNi3, the density-functional-based
calculations emphasize that the material subjected to the specific heat measurements may be
non-stoichiometric in the C sub-lattice [3]. This would then make it similar to the α-phase
of MgCNi3, which has a low unit cell volume and remains non-superconducting [8]. It has
been shown earlier that the exact C content in MgCyNi3 depends on the nature of synthesis
and other experimental conditions [1, 8–12]. According to Johannes and Pickett [3], the
arguments that favour non-stoichiometry are the following. (i) Total energy minimization
en route to equilibrium lattice constant within the local-density approximation (LDA) finds
an overestimated value for ZnCNi3 in comparison with the experimental values. In general,
overestimation is not so common in the LDA. Meanwhile, when one uses a similar technique
for MgCNi3, the calculations find a slightly underestimated value which is consistent within
the limitations of the density-functional theory [4, 13, 14]. (ii) The authors also find N(EF) in
MgCNi3 estimated as 13.6 states/Ryd atom, while for ZnCNi3, under similar approximations,
it was found to be 11.01 states/Ryd atom. Note that it has been shown both experimentally
as well as from first-principles calculations that a decrease in the lattice constant or a decrease
in the C occupancy would lead to a decrease in N(EF) [13]. (iii) A decrease in the unit cell
dimensions can induce phonon hardening. This is well supported by experiments which find
the Debye temperature to be approximately 1.6 times higher for ZnCNi3 in comparison to
MgCNi3 [2].

Earlier synthesis of ZnCyNi3 [15–17] found the lattice constant to be 6.899 au, for
which the occupancy in the C sub-lattice was just 70%. The authors have employed
a similar preparation technique for MgCNi3 [15] and have found that the C occupancy
ranges between 0.5–1.25, which is consistent with the recent reports [1, 8–12, 18]. A
lattice constant for ZnCNi3 as high as 7.126 au has also been reported elsewhere [19, 20],
which then becomes consistent with the recent total energy minimized value using density-
functional-based methods. Hence, it seems that ZnCNi3 which was subjected to specific heat
experiments [2] may indeed suffer from non-stoichiometry.

To understand and compare the effects of C stoichiometry on the structural and electronic
properties of MgCyNi3 and ZnCyNi3, we carried out a detailed study using the Korringa–
Kohn–Rostoker (KKR) Green’s function method [21, 22] formulated in the atomic sphere
approximation (ASA) [23]. For disorder, we employ the coherent-potential approximation
(CPA) [24]. Characterization of MgCyNi3 and ZnCyNi3 with 0.85 � y � 1.00 mainly involves
the changes in the equation of state parameters, namely, the equilibrium lattice constant, bulk
modulus and its pressure derivative. The electronic structure is studied with the help of the
total and the sub-lattice resolved densities of states. The propensity of magnetism in these
materials is studied with the help of fixed-spin moment method [25] in conjunction with the
Landau theory of phase transition [26]. The Hopfield parameter η which generally maps the
local ‘chemical’ property of an atom in a crystal is also calculated as suggested by Skriver and
Mertig [27], and its variation as a function of lattice constant has also been studied. In general,
we find that both MgCNi3 and ZnCNi3 display very similar electronic structure. Evidence
suggests that the non-superconducting nature of ZnCNi3 may be related to the crystal structure
characteristics, namely the phonon spectra.

2. Computational details

The ground state properties of MgCyNi3 and ZnCyNi3 were calculated using the KKR-ASA-
CPA method of alloy theory. For improving alloy energetics, the ASA was corrected by
the use of both the muffin-tin correction for the Madelung energy [28] and the multi-pole
moment correction to the Madelung potential and energy [29, 30]. These corrections have



A first-principles comparison of the electronic properties of MgCyNi3 and ZnCyNi3 alloys 5335

brought significant improvement in the accuracy of the total energy by taking into account
the non-spherical part of polarization effects [31]. The partial waves in the KKR-ASA
calculations are expanded up to lmax = 3 inside atomic spheres, although the multi-pole
moments of the electron density have been determined up to l M

max = 6, which is used for the
multi-pole moment correction to the Madelung energy. In general, the exchange–correlation
effects are taken into consideration via the local-density approximation with Perdew and Wang
parameterization [32], although a comparison in the equation of state parameters has been made
in this work with the generalized gradient approximation (GGA) [33]. The core states have been
recalculated after each iteration. The calculations are partially scalar-relativistic in the sense
that although the wave functions are non-relativistic, first-order perturbation corrections to the
energy eigenvalues due to the Darwin and the mass–velocity terms are included. The atomic
sphere radii of Mg (Zn), C and Ni were kept as 1.404, 0.747, and 0.849 of the Wigner–Seitz
radius, respectively. The vacancies in the C sub-lattice are modelled with the help of empty
spheres, and their radius is kept the same as that of C itself. The overlap volume resulting from
the blow up of the atomic spheres was less than 15%, which is legitimate within the accuracy
of the approximation [34].

The electron–phonon coupling parameter λ can be expressed as η/M〈ω2〉, where η is
the Hopfield parameter, expressed as the product of N(EF) and the mean square electron–ion
matrix element 〈I 2〉, with M and 〈ω2〉 being the ionic mass and average phonon frequency [35].
However, one may note that the above decomposition of the problem into electronic and phonon
contributions is only approximate since in principle 〈ω2〉 is also determined by the electronic
states. It follows that the Hopfield parameter is the most simple basic quantity which one may
obtain from first principles as suggested by Gaspari and Gyorffy [36]. The latter assumes a rigid
muffin-tin approximation (RMTA) in which the potential enclosed by a sphere rigidly moves
with the ion and the change in the crystal potential, caused by the displacement, is given by the
potential gradient. Within the RMTA the spherically averaged part of the Hopfield parameter
may be calculated as

η0 = 2

N(EF)

∑

l

(l + 1)M2
l,l+1

Nl (EF)Nl+1(EF)

(2l + 1)(2l + 3)
(1)

where N(EF) is the total density of state per spin at the Fermi energy, and Nl the lth partial
density of state calculated at the Fermi energy EF, on the site considered. The term Ml,l+1 is
the electron–phonon matrix element given as [27]

Ml,l+1 =
∫ S

0
r 2 Rl

dV

dr
Rl+1 dr (2)

which is obtained from the gradient of the potential and the radial solutions Rl and Rl+1 of the
Schrodinger equation evaluated at EF. The special form of equations (1) and (2) stems from the
ASA in which the radial wave functions are normalized to unity in the atomic sphere of radius
S, i.e.,

∫ S
0 r 2 R2

l (r) dr = 1. In the ASA, Ml,L+1 is expressed in terms of logarithmic derivatives
Dl = r R′

l/Rl evaluated at the sphere boundary. Skriver and Mertig derive the expression for
Ml,l+1 as

Ml,l+1 = −φl(EF)φl+1(EF)
{
[Dl − l)]

[
Dl+1 + l + 2)

] + [EF − V (S)] S2
}

(3)

where V (S) is the one-electron potential and φl(EF) the sphere boundary amplitude of the l
partial wave evaluated at EF.

Numerical estimates of the magnetic energy were carried out using the fixed-spin-moment
method [25]. In the fixed-spin-moment method the total energy is obtained for a given
magnetization M , i.e., by fixing the numbers of electrons with up and down spins. In this
case, the Fermi energies in the up and down spin bands are not equal to each other because
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the equilibrium condition would not be satisfied for arbitrary M . At the equilibrium M two
Fermi energies will coincide with each other. The total magnetic energy becomes minimum or
maximum at this value of M . Note that the two approaches, i.e., the self-consistent, floating-
spin-moment method and the fixed-spin-moment method, are equivalent in the sense that for
a given lattice constant the magnetic moment calculated by the standard floating-spin-moment
approach is the same as the magnetic moment for which the fixed-spin-moment total energy has
its minimum [37]. In practice, the floating-spin-moment approach sometimes runs into some
convergence problems. From experience, to avoid such predicaments in convergence, one may
carefully monitor the mixing of the initial and final charges during the iterations and increase
the number of k-points. Thus, for a better resolution to determine the change in the total energy
with respect to the input magnetization, the k-mesh had 1771 k-points in the irreducible wedge
of the cubic Brillouin zone.

By the fixed-spin-moment method the difference �E(M) (=E(M) − E(0)) for given
values of M is calculated. The calculated �E(M) is fitted to the phenomenological Landau
equation of phase transition which is given as

�E(M) =
∑

n>0

1

2n
a2n M2n (4)

for n = 3, where the sign of the coefficient a2n for n = 1 determines the nature of the magnetic
ground state, i.e., a2 > 0 refers to a paramagnetic ground state while a2 < 0 refers to a
ferromagnetic phase. We have applied the approach described above to the study of carbon
vacancies in MgCNi3 [13] and 3d transition-metal–MgCNi3 alloys [14].

3. Results and discussion

3.1. Equation of state

Both x-ray and neutron diffraction techniques unambiguously report MgCNi3 and ZnCNi3 as
cubic perovskites with their lattice constants determined as 7.201 and 6.918 au, respectively.
Assuming an underlying rigid cubic lattice, with Mg (Zn) at the cube corners, Ni at the faces
and C at the octahedral interstitial site, total energy minimization was carried out to determine
the equation of state parameters. The total energies calculated, self-consistently, for six lattice
constants close to equilibrium were fed as input to a third-order Birch–Murnaghan equation
of state [38, 39]. Note that the Birch–Murnaghan equation is derived from the theory of
finite strain, by considering an elastic isotropic medium under isothermal compression, with
the assumption that the pressure–volume relation remains linear. Hence, in the optimization
procedure we have restricted the choice close to the equilibrium.

Since the choice of the exchange correlation potential in the Kohn–Sham Hamiltonian
has proven to be sensitive in the structural characterization, we have carried out the total energy
minimization for two different approximations, namely the LDA and GGA [32, 33]. The results
are shown in table 1. The GGA considerably overestimates the lattice constant for both alloys,
when compared to the experimental values. For MgCNi3, using the LDA description of the
exchange–correlation, the lattice constant was calculated as 7.139 au, with the bulk modulus
and its pressure derivative as 0.42 Mbar and 4.78, respectively. These values are consistent
with the earlier first-principles reports [4, 6]. The underestimation in the lattice constant for
MgCNi3, however, when compared to the experiments, is due to the over-binding effects in the
LDA, and is a well known problem.

For ZnCNi3 the equilibrium lattice constant calculated using LDA yielded the value as
7.056 au, which, when compared to the recent x-ray diffraction results [2] of 6.918 au, was
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Figure 1. The variation in the equation of state parameters, equilibrium lattice constant aeq (au),
the bulk modulus Beq (Mbar) and the pressure derivative of the bulk modulus, as a function of y in
MgCyNi3 (open circles) and ZnCyNi3 (filled squares) calculated using the KKR-ASA-CPA method
as described in the text.

Table 1. Comparison of the equation of state parameters of cubic perovskite ZnCNi3 with that of
MgCNi using the KKR-ASA method as described in the text.

GGA LDA

ZnCNi3 MgCNi3 ZnCNi3 MgCNi3

aeq (au) 7.2255 7.3041 7.0558 7.1387
Beq (Mbar) 0.3886 0.3479 0.4656 0.4188
B ′

eq 4.4106 4.5255 4.3444 4.7813

found to be an overestimation. However, the results of the present calculations are consistent
with the works of Johannes and Pickett [3] who employed the FP-LAPW method. Note that
the consistency of the ASA calculations with that of the full-potential counterparts are due to
the inclusion of the muffin-tin correction [28]. The KKR-ASA calculations further finds the
bulk modulus and its pressure derivative of ZnCNi3 as 0.46 Mbar and 4.34, respectively. As
mentioned above, the overestimation of the lattice constant in the LDA is not so common, which
suggests that the samples subjected to the experiments may be sub-stoichiometric. This was
also emphasized by Johannes and Pickett [3] following the crystal structure characterization of
MgCyNi3 alloys [8]. In the latter, both experiments [8, 12] and theoretical calculations [13]
have shown that the lattice constant decreases as the C content in the material decreases.

To look for the changes in the equation of state parameters as a function of C content in
MgCyNi3 and ZnCyNi3 alloys, total energy minimization was carried out. The variation is
shown in figure 1. For both MgCyNi3 and ZnCyNi3 alloys, the lattice constant as well as the
bulk modulus decrease as the C atomic percentage decreases. For MgCyNi3, the observed trend
is consistent with the earlier x-ray diffraction measurements. The rate of decrease in the lattice
constant is estimated as 0.142 au/at.% C while for ZnCyNi3, the lattice constant was found to
decrease at the rate of 0.189 au/at.% C. Though the lattice constant and bulk modulus showed
similar trends for both alloys, the change in the pressure derivative of the bulk modulus as a
function of y characteristically differed.

The pressure derivative of the bulk modulus measures the rate at which the material
becomes incompressible with increasing pressure, and is sensitive to the softness of the
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Figure 2. The variation in the equation of state parameters, equilibrium lattice constant aeq (au),
the bulk modulus Beq (Mbar) and the pressure derivative of the bulk modulus, as a function of x in
Mg1−x Znx CNi3 calculated using the KKR-ASA-CPA method as described in the text.

equation of state. In the Debye approximation for isotropic solids, which assumes a uniform
dependence of the lattice frequencies with volume, one may express the average phonon
frequency ω as B ′

eq ∝ δ ln ω
δ ln V , where V is the equilibrium volume of the unit cell. Note that

volume for the vacancy-rich alloys decreases with decreasing y, while B ′
eq maps a different

trend for MgCyNi3 and ZnCyNi3 alloys. Such a behaviour indicates that the properties
associated with the MgCyNi3 lattice could be characteristically different from that of the
ZnCyNi3 counterparts. Also, one may note that the phonon spectrum for MgCNi3 reveals
that certain C modes play a vital role in the materials superconducting properties in addition to
those of the Ni modes [40, 41].

Partial replacement of Zn for Mg in MgCNi3 has shown that the transition temperature
decreases [42]. The findings also conclude that the nature of the pairing mechanism in MgCNi3
is conventional [42]. To study the changes brought about by Zn substitutions in the Mg sub-
lattice of MgCNi3, we have carried out KKR-ASA-CPA calculations for Mg1−x ZnxNi3 alloys.
In figure 2, we show the variation of the equation of state parameters of Mg1−x Znx Ni3 alloys.
The decrease in the lattice constant is consistent with the previous experimental report. The
bulk modulus as well as its pressure derivative increases as x increases in Mg1−xZnx Ni3 alloys.
This clearly indicates that the average phonon frequency gets modulated as Zn replaces Mg in
MgCNi3.

3.2. Electronic structure

In figure 3, we show the total and sub-lattice resolved partial densities of states of MgCNi3 and
ZnCNi3 calculated at their respective equilibrium lattice constants. The characteristic features
of both MgCNi3 and ZnCNi3 appear more or less similar with the exception of a sharp peak
in the energy range −0.6 � E � −0.4, characteristic of Zn 3d states. Being very low on
the energy scale compared to the Fermi energy, which is zero on the scale shown, one may
expect Zn d states to be localized and thus behave atomically, while for MgCNi3 a small peak
characteristic of the Mg–Ni bonding also appears in this energy range, but is less pronounced.
Furthermore, the states near EF are predominantly Ni 3d in character in both alloys, with little
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Figure 3. Comparison of the total and sub-lattice resolved partial densities of states of ZnCNi3
and MgCNi3, calculated at their respective equilibrium lattice constants. The vertical line through
energy zero represents the alloy Fermi energy. In the inset we show an enlargement of the total
density of states near the Fermi energy.

Table 2. Comparison of the total N(EF) and sub-lattice resolved densities of states of ZnCNi3 and
MgCNi3 expressed in units of states/Ryd atom.

N(EF) Zn(Mg) C Ni Ni dxy(xz) Ni dyz Ni dx2−y2 Ni d3z2−1

ZnCNi3 13.005 0.945 1.076 10.984 4.002 0.168 1.296 0.606
MgCNi3 14.557 1.016 1.199 12.341 4.509 0.097 1.474 0.658

admixture of the C 2p states. One may also find that the position of the Ni 3d derived singularity
is slightly lower in the energy scale for ZnCNi3 than for MgCNi3, which is consistent with the
previous results. The N(EF) and the contributions to it from the sub-lattices are compared in
table 2.

The reported values of N(EF) for MgCNi3 are at variance with the existing
reports [4–7, 43–47]. It appears that the value is sensitive to the basic approximations made in
each type of the electronic structure method, and also to the parameters like that of the choice of
Wigner–Seitz radii, choice of the exchange–correlation potential, and others. However, under
similar approximations, it is clear that for ZnCNi3 the N(EF) reduces by 12% in comparison
with MgCNi3. This is consistent with the earlier first-principles FP-LAPW calculations [3].
The reduction in N(EF) may be largely due to the smaller lattice constant of ZnCNi3, in
comparison with MgCNi3. The change in the density of states, as well as in the N(EF), as
a function of lattice constant is shown in figure 4. Approximating the variation of N(EF) to be
linear with respect to the lattice constant, we find dN(EF)/da to be 20.46 and 22.02 states/Ryd
atom/au for MgCNi3 and ZnCNi3, respectively.

To understand the changes in the electronic structure upon the introduction of C vacancies,
in figures 5–8 we show the changes in the total and sub-lattice resolved C 2p and Ni 3d
partial densities of states of ZnCyNi3 and MgCyNi3 alloys calculated at their equilibrium lattice
constants. It follows from the figures that the change in the distribution of states is more or less
insignificant near the Fermi energy, but states lower in energy undergo substantial changes.
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energy zero represents the alloy Fermi energy.
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Figure 5. Comparison of the change in the total density of states of ZnCyNi3 (solid line) and
MgCyNi3 (dashed lines) alloys calculated at their equilibrium lattice constant with y as indicated.
The vertical line through energy zero in each panel represents the Fermi energy.

Upon the creation of vacancies, a few of the C 2p–Ni 3d bonds break, and result in charge
redistribution. Note that the CNi6 octahedron is a covalently built complex to which the cations
at the cube corners (Zn and Mg) are thought to have donated their outermost valence electrons.
The crystal geometry suggests six Ni atoms as the first nearest neighbours to C and eight Mg/Zn
atoms as second nearest neighbours. For Ni the second nearest coordination shell carries four
Mg/Zn atoms. The charge redistribution arising due to the breaking of the p–d bonds would
be proportional to the electro-positivity of the cation-Mg/Zn. Since Mg is more electropositive
than Zn, charge redistribution to the Mg/Zn sub-lattices, as a function of vacancies, would be
more significant in MgCNi3 when compared to ZnCNi3. This is consistent with the fact that
a larger fraction of the charge would be transferred back to the Mg sub-lattice in MgCNi3 in
comparison with that of the Ni sub-lattice.
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their equilibrium lattice constant with y as indicated. The vertical line through energy zero in each
panel represents the Fermi energy.

The change in the N(EF) as a function of lattice constant in Mg1−xZnx CNi3 alloys is
shown in figure 9. One may find that N(EF) decreases for all values of x , with respect to lattice
constant. However, N(EF) as a function of x , at the equilibrium lattice constant, was found to
deviate a little, as is evident from figure 9. This clearly suggests that the electronic structure
properties are mainly governed by the CNi6 octahedra. The atoms occupying the cube corners,
i.e., Mg and Zn, however, play a non-trivial role in determining the structural properties.

3.3. Hopfield parameter

The Hopfield parameter η has been regarded as a local ‘chemical’ property of an atom
in a crystal. It has been emphasized earlier that the most significant single parameter in
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figure.

understanding the TC of a conventional superconductor is the Hopfield parameter [35]. For
strong-coupling systems, the variation in η is more important than the variation of 〈ω2〉 in
changing TC. Softening 〈ω2〉 often does enhance TC, but a significant change in the magnitude
of TC depends largely on a significant change in the η value rather than a small change in
the corresponding 〈ω2〉. As a matter of fact, we look for the changes in η from the three
sub-lattices of these perovskites as a function of lattice constant as well as y in MgCyNi3

and ZnCyNi3 alloys. Note that for MgCNi3, it has been reported that the superconducting
transition temperature TC increases upon application of external pressure [48, 49]. Besides,
experiments remain controversial on the strength of the electron–phonon interaction in
MgCNi3 [50, 51, 48, 52]. It has been suggested that MgCNi3 may be a strongly coupled
superconductor, however, with the magnitude of TC being marginally reduced due to the
paramagnon interactions [4, 51].

In figure 10 we show the changes in η of MgCNi3 and ZnCNi3 as a function of lattice
constant. It is clear from figure 10 that ηC and ηNi linearly increase as a function of decreasing
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Figure 10. Comparison of the change in ηMg/Zn, ηC and ηNi as a function of lattice constant of
MgCNi3 (circles) and ZnCNi3 (squares).
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Figure 11. The change in ηC (upper panel) and ηNi (lower panel) as a function of lattice constant in
MgCyNi3 alloys with y as indicated.

volume in either alloys. If the change in the average phonon frequency remains small,
then either of these alloys could enhance the transition temperature with respect to external
pressure. For MgCNi3 this view is consistent with the previous experimental results. A similar
characteristic feature holds for the vacancy-rich disordered alloys, the variation of which is
shown in figures 11 and 12.

To have an understanding in the variation of ηC, ηvac and ηNi, where ηvac can be considered
as the local chemical property of the electrons in the empty sphere, we show in figure 13 the
change in these parameters as a function of y in both MgCyNi3 and ZnCyNi3 alloys. One may
find that the variation of η remains similar for both the alloys as a function of decreasing C
content.
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Figure 13. Comparison of the change in ηC, ηvac and ηNi as a function of y in ZnCyNi3 (squares)
and MgCyNi3 (circles) alloys.

3.4. Magnetic properties

Total energies from both the self-consistent, spin-polarized and spin-unpolarized calculations
remain degenerate for MgCNi3 and ZnCNi3 alloys at their equilibrium lattice constants.
This unambiguously shows that the materials are non-magnetic in nature. However, having
suggested that MgCNi3 is on the verge of a ferromagnetic instability [4, 5, 51, 53, 54], and also
that incipient magnetism in the form of spin-fluctuations resides in the material, we attempt to
compare the magnetic properties of MgCNi3 and ZnCNi3 alloys using the fixed-spin-moment
approach of alloy theory [25].

Numerical calculations of magnetic energy �E(M) for MgCNi3 and ZnCNi3 were carried
out at over a range of lattice constants. The calculated results of �E(M) in the fixed-spin-
moment method are shown in figure 14. The calculated �E(M) curves are fitted to the form
of a power series of M2n up to n = 3, for the polynomial as mentioned above. The variations
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Figure 15. Comparison of the changes in the Landau coefficients a2, a4 and a6 as a function lattice
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respectively, for MgCNi3 and ZnCNi3 alloys.

of the coefficients, a2 in units of T
µB

, a4 in T
µ3

B
, and a6 in T

µ5
B

as a function of lattice constant,

are shown in figure 15. The propensity of magnetism can be inferred from the sign of the
coefficient which is quadratic in M , i.e., a2. The coefficient a2 is the measure of the curvature
and it is positive definite when the total energy minimum is at M = 0, thus referring to a
paramagnetic ground state. In general, when a2 becomes negative, it infers that there would
exist a minimum in the �E–M curve at a value other than M = 0, referring to a ferromagnetic
phase at that value of M . The higher-order coefficients a4 and a6 however are significant and
they control the variation of �E with respect to M . For example, for larger values of M , a4

and successively a6 would dominate, and if a4(a6) tends to be negative it would show a dip in
the �E–M variation pointing towards a magnetic transition at a higher value of M . This, in
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the first-principles characterization of the magnetic properties of a material, would refer to a
possibility of a metastable phase at relatively large values of external magnetic fields. However,
it has to be noted that calculations for large values of M can result in ambiguous results. Hence,
it is suggested to carry out calculations for smaller values of M and use the above-mentioned
polynomial function up to the minimum order, where the curve fits with sufficient accuracy.

Figure 15 shows that for smaller values of lattice constant, the alloys show an enhanced
paramagnetic character. One may also note that the variations in a4 and a6 coefficients are
oppositely complemented, and hence in the renormalized approach to include corrections due to
spin-fluctuations, as suggested by Yamada and Terao [55], they would cancel out in proportion,
preserving the trend in the variation of a2. Thus, it becomes likely that the incipient magnetic
properties associated with MgCNi3 and ZnCNi3 would decrease as a function of decreasing
lattice constant.

4. Conclusions

First-principles studies of the electronic properties of MgCNi3 and ZnCNi3, and also their
non-stoichiometric alloys, have been carried out using the density-functional-based KKR-ASA
method. We find that the lattice constant for ZnCNi3 is overestimated, while for MgCNi3 it
is underestimated. This suggests that the material ZnCNi3 subjected to experiments may be
non-stoichiometric. As a function of decreasing C content in MgCyNi3 and ZnCyNi3 alloys,
one finds an opposite trend in the variation of pressure derivative of the bulk modulus, which
is proportional to the averaged phonon frequency. With the electronic structure remaining
essentially the same for MgCyNi3 and ZnCyNi3, the results hint that non-stoichiometry
may have opposite effects. Note that for 0.9 < y < 1.0, MgCyNi3 alloys are feebly
superconducting, while according to the conjecture that has been made ZnCyNi3 is not. It
can thus be inferred that the associated phonon modes in ZnCNi3 and its disordered alloys may
be characteristically different when compared to the MgCNi3 counterparts. A comparison of
the phonon spectra of these alloys thus become quite necessary to understand the absence of
superconductivity in ZnCNi3, although it is iso-structural and iso-valent with MgCNi3.
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